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Abstract-We study the problem of the initiation and subsequent growth of a shear band in a
thermillly softening viscoplastie prismiltic body of square cross-section and containing two sym
metrically plaeed thin layers of a dilferent viscoplastic material and an elliptical void at the center.
The yield stress of the material of the thin layer in a quasistatic simple compression test is wken to
be either live times or one-fifth that of the matri" material. The body is defonned in plane strain
compression at'l nominal strain rate of S.OOQ s '. These deformations are .Issumed to be symmetrical
about the centroidal axes.

It is found th'lt shear bands initiate fmm the ends of the major a.'es of the ellipsoidal void .lnd
prop,lgate in the direction of the ma,imum shear stress. These bands arc arresll:d by the strong
virtually rigid material (If the thm layer. but p.ISS through the weaker material of the thin layer
rather eilsily. Other shear bilnds originate from points where the thin layers ll1eetthe free houndilnes
and propagate inll'the matri:\. material alt'ng the direction I'fma:\.imum shearing when the mall:rial
of the thin hlyer is stronger. but prvpagate into the thin layer when its materi'll is weaker than the
matri:\. matenal. The haml in the \\eaker material of the thin layer hifurcates intI' t\\O hands that
propilgate into the matri, material in the directilltl of the m."imulll shearing stress.

I. INTRODUCTION

According to a recent paper of Johnson (19X7). Henry Tresca (I X7X) observed hot lines in
the form of ,t cross dming hot forging of a platinum bar. Tresca pointed out th:lt these
were the lines of greatest sliding. :tnd also therefore the zones of greatest development of
he:tl. Suhsequently. Massey (1921 l reported the :lppcarance of these hot lines during the
hot forging of a metal at a relatively low temperature of 680 C. Massey noted that "when
diagonal 'slipping' takes place there is great friction between particles and a considerable
amount of heat is generated". The rcse.tn:h activity in this area h:ts increased signilicantly
since the time Zener and Hollomon (ItJ44) reported 32 Jfm wide shear bands during the
punching of a hole in a steel plate and attributed this to the dest"lbilizing ctfect of thermal
softening in red lll.:ing the slope of the stress-strain curve in nearly adiabatic dcform:ltions.
The hot lines of Tresea and Massey arc now rcCerred to as shear bands. Most of the
analytical (Recht, 1%4; St..lker. 19~H; Clifton, 1980; Molimtri and Clifton, 19~n; Burns,
191:\S; Wright. 1997; Anand 1:1 al., ItJ87; Bai. 1981; Coleman and Hodgdon. 191:\5) and
numerical (Clifton 1:1 al.• 19X4; Merzer. 1982; Wu and Freund. 1984; Wright and Batra.
1995, 1997; Wright and Wulter. 1987; Batra. 1987u. 1988) works aimed at understanding
factors that enhance or inhibit the initiation and growth of shear bands have involved
analyzing overall simple shearing deformations of u viscoplastic block. A material defect
has been modded by introducing (i) a temperature perturbution, (ii) a geometric defect
such as a notch or a smooth variation in the thickness of the specimen. or (iii) assuming
that the materiul at the site of the dcfcct is weaker than the surrounding material. The
experimental observations of Moss (1981). Costin 1:1 al. (1979). Hartley I:t al. (1987) and
of Marchand and DulTy (1988) h,lve contributed significantly to our understanding of the
initiation and growth of shear bands in steds deformed at high struin rates.

Recently, LeMonds and Needleman (1986a.b). Needleman (1989). Batra and Liu
(1989. 19tJOl. Anand t'l al. (1988). Zhu and Batra (1990) and Batra and Zhang (1990)
studied the phenomenon of shear banding in plane strain deformations of a viscoplastic
solid. Whereas Needleman (1989) studied a purely mechanical problem. other works have
treated a coupled thermomechanical problem. We note that LeMonds and Needleman and
Anand ('1 al. neglected the cffect of inertia forces on the ensuing deformations of the body.
In all of these works the entire body or the portion of the body whose deformations were
analyzcd had only one dcfcct in it.
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Hc;:re we study the plane strain thermomechanical deformations ofa thermally softc;:ning
viscoplastic solid containing an elliptical void and two thin layers placed symmetrically
about the horizontal centroidal axis. These horizontal layers may be thought of as repre
senting planes of chemical inhomogeneity. The voids can form during manufacturing.
However. the symmetrical situation considered herein is to simplify the problem. The
constitutive relations for the matrix material and the material of the thin layers are the
same. except that the flow stress for the material of the thin layer in a quasistatic simple
compression test equals either five times or one-fifth that of the matrix material. The points
on the free edges where the thin layer and the matrix materials meet. as well as the void
vertices on the major axes of the ellipsoid. act as nuclei for the initiation of shear bands. It
thus becomes an interesting exercise to investigate where the shear bands initiate first and
the interaction amongst them. We note that the problem formulation incorporates the
effect of inertia forces. strain-rate sensitivity and heat conduction. However. the overall
deformations of the body are assumed to be adiabatic. The nonlinear partial differential
equations expressing the balance of mass. linear momentum and internal energy are solved
numerically for a prescribed set of initial and boundary conditions.

2. FORMULATION OF THE PROBLEM

We use a fixed set of rectangular Cartesian coordinate axes to study the plane strain
deformations of a thermally softening viscoplastic body being deformed in simple com
pression. The cross-section of the body. shown in Fig. I. has an ellipsoidal void at the center
and two thin layers of a different viscoplastic material placed symmetrically about the
horizontal axis. The deformations of the body are ussumed to be symmetricul ubout the
two centroidal axes. Accordingly, only the deformutions of the muteriul in the first quadrunt
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are analyzed. Equations governing these deformations are:

(pJ)' =O.

Pn l \ = T,~.••

UBI

(I)

(2)

(3)

Equations (I). (2) and (3) express. respectively. the balance of mass. linear momentum and
internal energy. Here P is the present mass density of a material particle whose mass density
in the reference configuration is Po. J is the determinant of the deformation gradient X,."
l", the velocity of a material particle in the x,-direction. X, gives the position at time t of
the material particle X•• Til is the first Piola-Kirchoff stress tensor. f! is the specific internal
energy. Q. is the heat nux measured per unit area in the reference configuration. and

(4)

is the strain-rate tensor. Furthermore. a superimposed dot indicates material time derivative,
a comma followed by index 'XU) implies partial differentiation with respect to X. (J). and
a repeated index implies summation over the range of the index.

The balance laws are supplemented by the following constitutive relations:

T" = (Pn/p)rr,;X•. I• a'l = -B(pIPn-l)c5
"

+2JlD,,. (5)

2)1 = [rr n/,/3/](1 +b/)'"(I-rxO), (6)

I~ = (1/2)15"15,,, (7)

n" = D,,- (1/3)Du (),1' (8)

Q. = (/In/p)qIX•.
"

q, = -kO.,• (9)

( 10)

In these equations. the material parameter B may be regarded as the bulk modulus. an is
the yield stress in a quasistatic simple compression test. parameters hand m describe the
strain-rate hardening of the material. 2 is the thermal softening parameter. () equals the
temperature change of a material particle from that in the reference configuration. k is the
thermal conductivity and c is the specific heat. Both k and c arc taken to be constants and
we have neglected stresses caused by the thermal expansion.

Equations (I) through (10) hold in the regions occupied by the matrix and the layer.
the only difference being either

an layer = 5ao matrix

or

all layer = (1/5)rro matrix.

The values of other material p~lrametersarc the same for the matrix and the layer.
Define s by

s = a+[B(/Jlpo-I)-(2p/3) tr D]I.

= 2Jlf).

Equations (12). (5) and (6) give

(1/2 tr S~)II~ = (rr ll /J3)(I-rxO)(1 +h/)m

( Ila)

(II b)

(l2a)

(l2b)

(13)

which can be regarded as the equation of a generalized von Mises yield surface when the
flow stress. given by the right-hand side of (13). at a material particle depends upon its
strain rate and temperature. Alternatively. equation (5) can be interpreted as representing
a non-Newtonian fluid whose viscosity depends upon the strain rate and temperature.
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We introduce non-dimensional variables as follows:

Vu == a,)'(puc). tJ = V 1)1), j == lV".

X= x,H. Ii = p,Pu. f3 == ki(PuC-/oHC). (14)

Here 2H is the height of the block and 1'0 is the velocity imposed on its top and bottom
surfaces. Substituting for a'l' q, and e from (5) through (10) into the balance laws (I)
through (3), rewriting these in terms of non-dimensional variables. and dropping the
superimposed bars. we arrive at the following set of nonlinear coupled field equations for
p. 1', and I):

(p./)' = 0,

prl', = - Bp, + [( 1i,l3I)( 1+ hl)"'( I -10 W"],,

pi) = IW" + (11/31)( 1-10)( I+hI)'" 15"15,,.

( 15)

( 16)

( 17)

whae \' = P,,1'I~ a" is a non-dimensional number. The value of \' signifies the clrcct of inertia
forces relative to the !low stress of the material. For the initial conditions we take

p(X,O) == I. \(x,O) == 0, lI(x, 0) = n. ( I~)

That is. the body is initially at rest at a uniform tcmperature and has constant mass density.
The pertinent boundary conditions for the material analyzed in the lirst quadrant arc

1': == -!l(I), 1', ~ == nand Qc == n. on the top surface AB. (19)

Til = n. 1': I == 0 and Q 1 == n, on the right surface Be. (2n)

I' ~ == 0, I'I ~ = 0 and Q: == n. on the bottom surface CD, (21 )

'1;,N, = 0 and Q,N, == O. on the surface DE of the void. (22)

1'1 = 0, Tcl = 0 and QI == O. on the left surface EA. (23)

These boundary conditions sim ulate thl.: situation whl.:n thl.: top surfacl.: is moving downward
with a speed 11(1). there is no friction between it and the loading dl.:vicl.:, thl.: right surfacl.: is
traction frl.:e. the void has not coall.:scl.:d and thl.: entirl.: boundary is thl.:nnally insubted.
The boundary conditions (21) and (n) arc due to the presumed symml.:try of the defor
mations about the x I and x ~ axes. When and where thl.: void coall.:sces. boundary condition
(22) is rl.:placed by (21). For the loading function 11(1). WI.: takl.:

!I(I) = (.0.005.

= I.

o~ I ~ 0.005,

I ~ 0.005.

At the common interl:.ce between the matrix and the reinforcing layer, the velocity
field. surface tractions. the temperature and the normal component of the heat nux are
assumed to be continuous.

3. COMPUTATION AND DISCUSSION OF RESULTS

3.1. CO/lll'lilllliolllllllSPCC(S

We USI.: the updated Lagrangian method [e.g. sec Bathe (1982)J to solve the problem.
That is. in order to find the deformations of the body at time 1+ tJ.l. the configuration of
the body at time I is taken as the reference configuration. The field equations (15) through
(17) and the associated boundary conditions (19) through (23) are first reduced to a set of
coupled nonlinear ordinary differential equations by using the Galerkin method and the
lumped mass matrix [e.g. see Hughes (1987)]. For this purpose. the spatial discretization of
the domain consisting of four-noded isopararnetric quadrilateral elements is employed.
Figure 2 depicts the mesh used in the reference configuration, The number of ordinary
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dill"l.:rl:ntiall:quations I:quals four tillll:s thl: nUlllhl:r of nodl:s hl:l:ausl: at I:al:h node, the mass
dl:nsity. the two wll1ponents of thl: vdol:ity and thl: tl:mperature arc unknown. The initial
wnditions (IH) imply that thl: initial mass dl:nsity at l:ad1 node point equals one. and the
initial valul:s of thl: two vdol:ity l:olllponl:nts and thl: templ:rature I:qual zero at all nodes.

Thl:sl: ordinary dilli:rl:ntial equations arl: intl:grated by using the IMSL subroutine
LSODE. In thl: subroutinl:. thl: option to intl:grate a stifl' set of equations is employed.
Thl: suhroutinl: adjusts thl: timl: stl:P adaptivdy until .1 solution of the coupled nonlinear
Jilkrentiall:quations has bel:n computl:d to thl: desired accuracy.

Thl: finite ekment codl: dl:vdoped earlier by Batra and Liu (1989) has been modified
to study the pn:sl:nt problem. After each time increment. the new surface of the void is
computl:d and examined to see if any node on the void surface has either reached or crossed
the horizontal axis of symmetry. If a node on the void surface has crossed the horizontal
axis. computations arc repeated from the previously computed solution but with a smaller
value of the time step. As soon as a node on the void surface reaches the horizontal axis,
the ':loundary conditions on the node are changed to those given by (21).

In the results presented below. we have used the following values of various material
and geometric parameters:

h = 10.0005. ao = 333 MPa. k = 49.22 W m -IC- I. m = 0.025.

c=473Jkg- ' C- ' . po=7860kgm-3, B= 128GPa,

f{ = 5mm. 1'0 = 25ms- l
•.:1. = 0.0025C- ' . (25)
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Thus the average applied strain rate equals 5000 s - I, 00 = 89.6 C and ~. = 0.015. We note
that in the simple shearing problem. Batra (1988) observed that the inertia forces playa
noticeable role when ~. = 0.004. Hence, the inertia forces will very likely playa significant
role in the present problem.

3.1. Discussion ofresults
3.1.1. Layer material stronger than the matrix material. [n order to understand which

points in the body are deforming severely. we have plotted the development of the maximum
principal logarithmic strain 6, the temperature rise 0 and the effective stress s<, equal to the
right-hand side of eqn. (13). at several material points near the major and minor axes of
the ellipsoidal void and at points where the "reinforcing layer" and the matrix material
meet. The logarithmic strain 6 is defined as

(:26)

where i.i and ;.~ are the eigenvalues of the right Cauchy-Green tensor C.1l = X,.•X,.II or the
left Cauchy-Green tensor B" =: x,.•x,.•. The equality in the second relation in (26) holds
because the deformations are nearly isochoric. i.e. )'I)'Z = I. Figures 3a, 3b and 3c depict,
respectively, the evolution of s, (J und So ut eight material points ncur the major uxis of the
ellipsoidal void and also ut a materiul point fur removed from it. The coordinutes, in the
stress free reference configuration. of these points arc given in the figure captions and their
approximate I()cations ure shown in Fig. Ia. The material points I, :2 and 3 arc u little bit
ofT of the horizontal uxis. points 1,4. 5 and 6 lie on a struight line making an anglc of nearly
45' with the horizontal axis, points I, 7 and 8 arc on an .tlmost verticul line. und point 13
is ncar the horizontal centroidal axis hut far removed from the void tip. The temperature
risc () and the maxilllulll principal logarithmic strain /; at point lJ incrcase very slowly as
the hlock continues to be compressed. The temperature at thc other eight points considered
rises rapidly in the beginning and then increases slowly. The values or t; at points I and 2
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Fig. Ja. The ma~imum principal logarithmic strain versus the .lver;lge strain at points I. ~. J . .J. 5.
£>. 7.11 and 13. Coordinates. in the stress frcc reference configuration. of these points arc: 1(0.1001.
0.00011, ~(O.I~OO. 0.0000, J(0.1400. 0.0000. 4{0.1141. 0.(141), 5(0.1211J. O.O:;XJ). 6{0.1701, 0.01(7).

7(0.1001. 0.0200). 8(0.1001, O.O.JOO). IJ(OROOI. O.OO(JI).
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Fig. .k. T/Je ctf~'Clive stress versus lhl: avcr;lgc slrain at points I lhrough 8. and I,;,

near the void tip increase at first and the consequent temperature rise m~\k.es the material
surrounding these points softer. The severe deformations of this material make the void
coalesce. This is indicated by the drop in the value: of <. at point I. The coalescence of the
void results in a redistribution of deformations in the material surrounding point I. The
rapid growth of r. at the void tip (point J) when the average strain equals 0.044 is indicative
of the eventual development of the shear band there. The plot or the effective stress in Fig.
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3c indicates that the effective stress at a material point is lower if its temperature is higher,
in conformity ""ith the constitutive relation employed. Even when the strain at material
point I rises rapidly. the low value of the effecti .. e stress there gives rise to moderate values
of the plastic working and the temperature rise does not increase significantly.

In Fig. 4. we have plotted the evolution of r. and IJ at points 9. 10. I L 12 and 13. The
first four points are near the vicinity of the point \\ here the void surface intersects the
vertical axis. Both the temperature rise and the value of the maximum principal logarithmic
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Fig. 40. The temperalure rise versus fhe average strain at rOll1ls <) through 13.
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strain at these points are approximately an order of magnitude lower than those at point I
near the void tip.

In order to delineate the difference between the deformations of the matrix material
and the material of the hard layer. we show in Fig. 5a the evolution of e at Sill points

0.3

"'i~, 5a, The ma,imullI pri/ll.:ipal !"It'lrithmit: stram vcrslls lilt" av'eralte slrain at points '17 throut:h
.1'1, {"(lordilwlcs. in the slress free referenl'e con!ifur;II;"n. of these points arc: 2710,99'N. 0.411501.
'1WI.9500. 0.4K5\l1. ::Nl!I.t)OOO. 04X;OI. ,10tH.'N'N. 0.41>501. .'11 (0.'/500.0.465(11. .'12t(l.I/OIIO. (1.4(,501.
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Fig. Sb. The maximum principallogarilhmic strain versus the average slrain al points 30 Ihrough
37. anJ point 1.'1. Coordin,ltes of poinls in the slress fn.:e reference configuralion not given in
previ(lUs ligures arc: )3(0.9645. O.·t~%). 34<0.9293. 0.39·m. 35/0.8939.0.3589).36(0.9999.0.4150),

37(0.9999.0.3650).



183S R. C BATRA and L G. ZHl

near the common interface between the matrix and the reinforcing layer. Points 27, 28 and
29 are in the layer and points 30. 31 and 32 are in the matrix. The deformation of points
27. 28. 29. 31 and 32 is miniscule as compared to that of point 30, whose deformation is
comparable to that of the point near the void tip. Also the maximum principal logarithmic
strain <: rises monotonically at point 30. Because of the very large values of the effective
stress in the hard layer. the plastic working and the resulting temperature rise in it are more
than that at adjoining points in the matrix material. Because of the larger deformations of
the matrix material near point 30. eventually the temperature rise at point 30 exceeds that
at point 27 in the hard hlyer. To explore the direction of propagation of the deformation
from point 30, we have plotted in Fig. 5b the maximum principal logarithmic strain versus
the average strain at points 30 through 37 and point 13. Points 30, 36 and 37 are on a
vertical line near the right traction free surface. and points 30. 33, 34 and 35 are on a line
that makes an angle of 45 with the vertical. The values of <: at points 31, 32 and 37 are
comparable to that at point 13 in the matrix material. Recall that point 13 is near the
horizontal centroidal axis and far removed from the void tip. The values of s at points 3 I.
32 and 37 are considembly smaller than that at point 30, indicating thereby that the
deformation ensuing at point 30 neither propagates horizontally nor vertically. The large
values of F. at point 36 arc indicative of the fact that a small material region surrounding
point 30 is deforming severely. Since the values of F. at points 33. 34 and 35 arc comparable
to that at point 30 and generally decrease as we move away from point 30, we may conclude
that the deformation propagates along the line joining these points, i.e. along the line
making an angle of 45 . with the vertical. The plots of F. at points situated ncar the upper
interface between the reinforcing layer and the matrix material are similar to those at points
27 through 35 and are not included herein.

In order to elucidate the evolution of a shear band. we have plotted in Figs 6 and 7
contours of the second invariant I of the deviatoric strain-rate tensor O. the maximum
principal logarithmic strain I;, and the temperature rise () at two dillCrent values of the
avemge strain. The contours of I describe how a material particle is deforming at a given
instant, contours of I; give the accumulated deformation until that time, :tnd contours of
() describe the total energy dissipated into heat till that time and the n:sulting temperature
rise. We note that the contour plot routine interpolates the data at numerous points in the
domain from that supplied at discrete points. Figure 6 shows the contours of I, I; and ()
when I'."R = O.024X. It follows from the contours of Ithat the material ncar the void tip and
points P and Q on the traction fret.: right edge where the reinforcing layer mects it is
deforming severely. As described earlier, these intense deformations propagate along lincs
indined at ±45· to the horizontal. The contours of I: and () rcvcal that the material
surrounding the aforestated lines has undcrgone severe deformations. Even though the
strain rate and the strain in the layer arc negligible as compared to their maximum values
in the matrix material. the stress in the layer is high. Consequently, the plastic work done
and thc resulting temperature rise in the layer are not that small. The contours of I, I; and
() at an average strain of 0.0308 plotted in Fig. 7 arc evidenct.: of the narrowing down of the
rapidly <kforming region. Three bands. two initiating from points P and Q, and the third
from the void tip, have formed. The maximum v:tlut.:s of I; and () equal 0.134 and 133 C.
respectively. We note th:tt if a block of rigid/perfectly pl:lstic material with now stress equal
to 333 M Pa were deformed homogeneously in simple eompression to an average strain of
O.OJOX, the temperature rise would equal 2.6 C assuming that all of the plastic work done
has been converted into heat. Thus, the significant temperature increase within the band
signifies the intense dcform:ttion therein.

3.2.2. Layer materia/lrellker thatl the matrix material. We first investigate the devel
opment of shear bands initiating from points P and Q that are on the right traction free
surface and the common interfaces between the layer and the matrix material. For this
purpose. we have plotted in Fig. Sa thc growth of the maximum principal logarithmic strain
F. at points 31 through 38. Points 31. 32, 33 and 34 arc on the layer side and points 35. 36.
37 and 38 are on the matrix side of the common interface between the layer and the matrix.
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The first four points lie on a horizontal line in the layer, and the last four points lie on a
different horizontal line in the matrix. Amongst these eight points. the growth of e at point
31 is the maximum. The relative magnitude of e at these points indicates that the severe
deformation initiating from point 31 propagates horizontally to point 32 within the softer
layer. Similarly. the severe deformation initiating from point Q propagates horizontally
within the soft layer. Recall that in the previous case, the severe deformations occurred at
the matrix particles on the common interface and propagated into the softer matrix material.
Since the values of f: at point 34 are quite small as compared to that at points 31 and 32.
the severe deformation either did not propagate horizontally from point 32 to point 34. or
there was not enough time for it to arrive at point 34. Which one of these two alternatives
is valid can be derived from the plots of f: at points 37 through 43. All of these points are
in the matrix. Because the flow stress in a quasistatic simple compression test for the matrix
material is five times that for the material of the layer. the strain rates and hence the strains
in the matrix material are small relative to those in the layer. We note that points 37. 38
and 39 are on a horizontal line. 37.40 and 43 are on a vertical line and 37.41 and 42 are
on a line that makes an angle of 45' with the vertical. For comparison purposes. the values
of f: at point 13 which is near the horizontal centroidal axis and far removed from the
ellipsoidal void are also plotted. The values of f. at these points indicate that the likely
direction of propagation of the shear band from point 37 is along the line joining it to
points 41 and 42. Similarly. the severe deformations initiating from point Q on the upper
interface between the layer and the matrix material will propagate horizontally tirst into
the S~lft layer and then into the matrix material along a line that makes an angle of 45' with
the vertical line. In order to sec whether these two bands propagate independently of eaeh
other (lr IWI. we have plotted in Fig. 9 the contours of the maximum principal logarithmic
strain at successively im:rcasing values of Y.IV~' At }'...~ = 0.013. shear bands have initiated
from the void tips on the major axis of the elliptical void as well as points on the free edge
where the layer meets the matrix material. Whereas the band originating from points on
the free edge propagates into the softer layer material. those initiating from the void tips
propagate into the matrix. The two bands initiating from points P and Qessentially coalesce
immediately into one because of the small thickness of the layer. Also due to the competing
etl"ect of the maximum shear stress in the ±45" directions and the relatively negligible
thickness or the layer. the band propagates horizontally into the layer.

When the body has been deformed to an average strain 01'0.0177. the matrix material
has softened somewhat because of its being heated up. The shear band originating from
the void tip has propagated more into the matrix material. The two bands that had coalesced
into one and were propagating horizontally into the layer now start to bifurcate and
propagate into the matrix material in the directions of the maximum shear stress. This
bifurcation of the shear band into two bands becomes clearer in Fig. 9c. At }'dVg = 0.02053.
the shear band that initiated from the void tip has merged with the one that bifurcated
from the band in the layer. The other band bifurcating from the one in the layer continues
to travel in the - 45 direction into the matrix material. During subsequent deformations
of the body. all bands propagate more into the matrix material. When ,·...s = 0.0273. the
bands originating from the void tip and the one diverted out of the layer material have
merged and propagated to the top right corner of the block. During the ensuing defor
mations. these bands do not quite narrow down into thin bands. Rather. the interaction
among various bands broadens the region that has deformed severely. Figure 9g shows
contours of the maximum principal logarithmic strain at Ydvg = 0.0333. The contour of
I: = 0.075 has propagated significantly into the matrix material from the void tip and also
into the softer layer and the surrounding matrix material ncar the points where the layer
meets the traction free edge of the matrix. Note that the maximum value 0.40 of f. equals
12 times the average strain of 0.0333.

Figure 10 depicts the contours of the temperature at various values ofY"vg. We recall
that the temperature rise at a point depends upon the total energy dissipated. At i'dvS = 0.013.
even though the layer material ncar the free edge has deformed severely, it has not been
heated up much because of the rather low value of stresses in it. The contours of temperature
reinforce the picture given above of the growth of and the interaction among various bands.
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Also only the m.lleriul near the void tip is heated up significuntly. At Yayg == 0.0333. the
maximum temperature reached ut a point near the void tip equals 157 'c. However. if the
body were made of a rigid/perfectly plastic material with a flow stress of 333 MPu and
deformed homogeneously in simple compression to an average strain of 0.0333. the tem
perature rise would e4uul only 2.85C. assuming thut all of the plustie work done has been
converted into heat.

Finally. we note that in both cases studied above. contours of distinct values or /: travel
at different speeds. The speed of propagation also depends upon the average strain reached
in the body.

Even though the deformations could be continued further. they were not mainly
becuuse the CPU time required exceeded our allotment .lOd it was felt that the deformations
had developed into well-defined shear bands.

4. CONCLUSIONS

We have studied the problem of the initiation and growth of shear bands in plane
strain deformations of a thermally softening viscoplastic body containing a void and two
symmetrically placed layers made of a viscoplastic material that differs from the matrix
m.lterial in the value of the flow stress in a quasistatic simple compression test. When the
layer material is stronger than the matrix material. a shear band first originates from the
void tip. This band propagates into the matrix muterial at an angle of approximately 45'
to the horizontal. the axis of loading being vertical. Two bunds also initiate from points
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where the layer meets the traction free boundary and these bands propagate into the matrix
material along ±45 directions. When the void has coalesced. the severely deforming region
surrounding the band around the void tip starts receding. Eventually three bands form at
an average strain of 0.044 when the maximum principal logarithmic strain and the tem
perature rise equal 0.134 and 133 C. respectively. However. when the layer material is
weaker than the matrix material. bands initiating from the void tip and the layer edges
propagate into the matrix and the layer. respectively. The band propagating in the layer
bifurcates into two bands that propagate into the matrix material in the direction of
maximum shearing stress. One of these bands eventually merges with that initiating from
the void tip. The severely deformed region in this case is quite different from the one when
the layer material is stronger than the matrix material.
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